PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Phase-matched optical second-harmonic generation in helically twisted smect* phase

I. Drevengk Olenik and M. ©pic
Department of Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
and Joef Stefan Institute, Jamova 39, 1111 Ljubljana, Slovenia
(Received 27 January 1997

Phase matching for optical second-harmonic generation in the helically twisted s@&dtgid-crystalline
phase is analyzed theoretically. Ten distinctive phase-matched combinations of the fundamental and the
second-harmonic eigenmodes exist. The effective second-order nonlinear optical susceptibility and the relation
between the optical wave vectors and the wave vector of helical structure are determined for each of the
combinations. The results obtained within the standard approximation of the slowly varying amplitude are
compared with the exact numerical solutions of the nonlinear wave equation. The discrepancy between the
approximative and exact results is crucial only for the two phase-matched combinations that are realized when
the second-harmonic frequency is close to the selective reflection band. In this case an additional enhancement
of the second-harmonic beam can appg&L063-651X%97)05707-3

PACS numbg(s): 42.70.Df, 42.65.Ky, 77.84.Nh

[. INTRODUCTION harmonic beam coincided with the period of the &h-e-
lix. This particular case has already been analyzed within

The phenomenon of optical second-harmonic generatiosome approximations in our previous papes].

(SHG) in the ferroelectric smectiG* (Sm-C*) phase has

recently become very attractive from a fundamental as well || opTicAL PARAMETERS OF THE Sm- C* PHASE

as an applicable point of view. Among different SHG char-

acteristics, the possibility for phase matching was investi- The bulk ferroelectric SnG* phase is characterized by a
gated most extensively. For this purpose the spontaneoushiglical spatial modulation of the molecular tilt and the spon-
formed SmE* helix was unwound by application of a static taneous electrical polarization. The direction of the modula-
external electric field1—9]. Phase matching in the resulting tion is normal to the smectic layers. The period of the helix,
homogeneous Sr8* phase was then achieved by a standardhelical pitchp, is usually of the same order of magnitude as
technique of compensation of material color dispersion by itdhe wavelengths of the visible light. This feature has a strong
birefringence[10]. influence on the optical properties of the &1i-phase.

In addition to the standard phase-matching technique, the The local characteristics of the optical dielectric tensor
helical structure of the Sr&* phase provides some particu- and the tensor of the second-order nonlinear optical suscep-
lar possibilities to achieve an efficient harmonic generationtibility x() are determined by the loc&l, symmetry of the
The optical wave-vector mismatch can be compensated b$m-C* structure. In compliance with this symmetyhas 3
the wave vector associated with the spatial periodicity of theand x(?) has 13 independent nonzero components. The over-
helix. This is similar to the phenomenon of phase matchingll permutation symmetry of thg(®) (Kleinman’s symmetry
in periodically poled materialgl1]. In liquid crystals such reduces the total number of its independent components to 4.
possibilities were demonstrated and analyzed by Shelton anthis symmetry is valid when the wavelength of the funda-
Shen for optical third-harmonic generatigifHG) in the  mental and the second-harmonic optical field is far away
cholesteric phasgl2—14. Later, similar features were found from any absorbtion bands of the liquid crystal. In the local
by Saha for the electric-field-induced SHE5]. Cartesian systeméq,&,,&;) oriented so that thé, axis is

In this paper we study the phenomenon of optical SHG irparallel to the local twofold axis and th& axis is parallel to
the twisted Snc* structure. The case of optical beams the principal axis of corresponding to the largest principal
propagating along the helical axis is examined. The exactalue, the nonzero components are
numerical solutions of the nonlinear wave equation are re-
lated to the analytical solutions within the standard approxi- €11, €22, €33 (1)
mation of the slowly varying amplitude. Possible phase-
matched combinations of optical waves are determined angnd
their relation to the helical periodicity of the structure is ana-
lyzed and discussed. The corresponding effective nonlinear
susceptibility coefficients are found. The main similarities
and differences between SHG in the &i-phase and THG

X123~ X132~ X213™ X231~ X312~ X321»

or field-induced SHG in the cholesteric phase are also X127 X217 Xt )
pointed out. In the discussion we show that our results can

explain the prominent increase of the SHG signal, which has X332~ X323~ X233

been reported by Kajikawat al. [16] and Furukaweet al.

[17] for the situation when the wavelength of the second- X222
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An important optical parameter of the structure is also theat the fundamental and at the second-harmonic frequency.
angle 0 between the8; axis and the smectic layers normal, The amplitudesA, are determined by the boundary condi-
generally known as the optical tilt angle of the &fi-phase. tions related to a selected experimental arrangement.

The orientation of the local coordinate axes; (€,,€5) The solutions of the homogeneous wave equatinin
varies in space in accordance with the helical modulation. Irthe helically modulated Sri&* structure have been studied
a fixed laboratory Cartesian system, (€,,€,), with the€, by different author$19,2Q. It was shown that for propaga-
axis parallel to the smectic layers normal, tBeare ex- tion along the helical axis the transverse component of the

pressed in the form optical field of the eigenmodes!'=E,— &,E, is analogous
. ) . . ) . . to the de Vries solutions for the cholesteric ph§2g,22.
€3=(sinf c0sqoZ)&+ (sind sin qoz)€,+(cosh) €, , These are the Bloch wave fields
€;=(—singyz) €, + (cop2) €y, ©) N —fielkraz) [ g +ig,
Ef=E, .6, +E,_6_= — | -
6,=6,% 6, Vi+[fid V2
. . |(k qO) e, —le
whereqqy=27/p is the wave vector of the modulation. The y )
components ot and x(?) in the laboratory system are then NEEPE V2
given by
where €. =+ (é,*i€,)/v2 denote the unit vectors of the
gij=Ri'Rjjreirjr, xijk=Rii'RjjRaw xirjrw»  (4)  circular base. The dispersion relatib(w) and the polariza-

tion factor f, of these fields are given by
fori,j,k=x,y,z andi’,j’,k'=1,2,3, whereR is the trans-
formation matrix from the local to the laboratory system. k== ((k3e +03) = \J4kGeqa+ a?kg ) 12 9
The result of the transformation is given in the Appendix.
From ten different components of thé? in the laboratory ~and
system onlyy,,,~ 0, while all the others have nonzero val-

i & axis | (k—qo)?—ke ok
ues. The relatiory,,,~0 comes out because tld& axis is £ = 0 0% _ 0 (10)
everywhere perpendicular to the local twofold agjs k aké (k+qg)2— kgs_'
Il WAVE PROPAGATION The introduced parametekg, ¢, anda are
The process of optical SHG in the helically modulated K _w
Sm-C* structure is governed by the nonlinear wave equation ¢
Lo . 2w\% . 1 (e33—&11)€11 SI? 6
VXV XE(F,2w —(—) eE(F,20 == togt —o P
( ) c ( ) 2 f11T £22 €11 Slr\2 0+833 COS2 o)’ (11)
_ 20)? 2).g(7 =2 a=e—e¢
- T X E(I’,w)E(r,w), (5) 22:

The longitudinal electric field of the eigenmodes is expressed
which describes the relation between the fundamental opticals
field E(F,») and the second harmonic fiel(f',2w). In
typical experimental situations both fields can be considered a
to be plane waves and the power depletion of the fundamen- E (
tal beam can be neglected. Within these assumptions and

taking that the fundamental beam enters the sample in thgherea is the tilt-dependent quantity given as
direction of the helical axi$e, axis), the solutions of Eq(5)

Ek,0: ézék: - Ek'+e_iq02+ Ek‘,e+iqoz), (12)

can be expressed by (e33—&417)Sin 6 cos b
4 €11 Sl 0+ €33 Cco 0
E( :gl AEr.(2), In the SHG process the longitudinal component of the fun-
(6) damental fieldE, o contributes to the generation of the trans-
4 ) verse component of the second-harmonic ﬂﬁ‘[q and vice
=> Bk(2)Ex 2,(2), versa. This interaction brings some additional “mixing”
k=1

terms to the solutions of the nonlinear wave equaiibn
. . ) Such terms do not exist in the case of the cholesteric phase
where Ey ,(z) and Ey,,(2) correspond to the normalized where ==/2 and the longitudinal field vanishes.

solutions of the homogeneous wave equation Two of the four eigenmodes as given by H8) corre-
5 spond to optical beams that propagate in the direction of the
N w2 €, axis and the other two to the equivalent beams that propa-
X VX - = z L L ) .
VXVXE(2) c? eE(2)=0 ™ gate in the direction of the- &, axis. In the dispersion spec-
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FIG. 1. Phase-matching combinations shown on the dispersion curves of the optical eigenmodes ofGhepBase. The modes

corresponding to branches 1 and 2 propagate iréjhdirection, while the modes associated with branches 3 and 4 propagate inéthe
direction. Modes 1 and 3 are polarized approximatelg asnd modes 2 and 4 & . This approximation breaks down wher»> wg and

for modes 2 and 3 also in the vicinity of the band gap where the modes become linearly polarized. The band-gap characterizes the region

where the two values & are imaginary and the corresponding modes are Bragg reflected from the helical structure. Thewgyishusied

to denote the Bragg frequen@yszqoc/\/g._ The labeling of the combinations is in accordance with Table I.

trum shown in Fig. 1 the corresponding branches are labelebh the region of this gap the circularly polarized optical

as branches 1,2 and 3,4 respectively. The main characteristicaves that match with the handedness of the Gmhelix

of the dispersion spectruk{ ) is the gap inside which two cannot propagate, but experience Bragg reflection from the
eigenvalues ok, as found from Eq(9), become imaginary.
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The form(8) of the optical eigenmodes suggests that the Within the SVAA we get from Eq(5) a set of two linear

manipulation of the nonlinear wave equati®) would be equations
more convenient by using the circular basg (€_ ,&;) of
the laboratory frame. Within this base the tensor of the non- 9B\ [ GEY 202
linear optical susceptibility(® transforms to 7Pk k2w| __ [£@ AANDE, B
EK 2\ %2 9z c kEK A Piex =B wBieo
Xijk:Tii’TTj'T:k/Xi’j’k’i i,j,k:+,_,0; (17)
i’k =x,y,z, 14 . > . .
J y (149 for the two eigenmodeE, ,, that satisfy relatior{16). In the
where the transformation matrik is circular base the set of equatiofis’) becomes
[ -1 i ] s o B JEZe.  gERe
\/E ‘/E k=TI 2 9z 0z € Jz €-
T=| 1 —j (15 2
— _ 0 (2“’) 2 (2).
=\ Akr ,Akn)( .
V2 2 C/l =14 !
| 0 0 1]

The result of the transformation is given in the Appendix.
The main benefit of using the circular base is that the four

independent components f?) are separated. They exhibit
distinctive spatial periodicities®,, 29, or g, with respect
to the helical structure.

A. Slowly varying amplitude approximation

The standard simplification used in solving the nonlinear
wave equation is the slowly varying amplitude approxima-

tion (SVAA) [23]. It assumes that in E¢5) the second-order

derivatives ofB,(z) can be neglected. In the helically modu-
lated SmE™* structure the applicability of the SVAA is re-

stricted by the condition

sz
9z°

< (16)

9B,
2[k(2w)*qp] e

It is evident that this condition is violated whe(2w)
~=*(p, that is, when the second-harmonic frequenayig
much lower than the Bragg frequenag=qoc/e(2w).

X(E,, ,€,+E,, € )(E, & +E, &),

(18

where indices | and Il designate the eigenmodes at the
second-harmonic frequency and the tensor of the “trans-
verse” nonlinear susceptibilityegrz) is defined by

eir 2t E P
X Ep Ep=x"?:EpEp (19

The components of{? are calculated on the basis of the
relation (12) and are explicitly given in the Appendix. By
introducing X§3>, both sides of Eq(18) are expressed en-
tirely in terms of the transverse components of the field,
which simplifies further calculation and is also appropriate
when considering boundary conditions at the sample sur-
faces.

Multiplication of Eq.(18) by 5 =—6é_ andé* =—-¢, ,
respectively, results in the system of two equations for
(0B,/9z) and (¥B,/9z), which is given as

&Bk _i 2(1) 2 | ’ "
— =5 |= rinByr Appe” Tk(20)—K (0) —K'(w)]2z -
Ko7 =3 (C) k',k”:El ..... ,DeieAAce . k=10, (20
where
Ci(VL1+]f1) = (ki + o) (ky — Go) i — (k= o) (Ky + Go) iy = — C (VL1 +[Fy %) (21)
and
D _[(k“+q0)f||eiqozét+(k“_qO)e_quZé+)]th’:[é*éfe_ziqoz_é7é+fkﬂ_é+é},fkr+é+é+fkrfk1762iqoz]
|,k/k"— ,
N1+ f D1+ fi]?) 22

[(ki+do) f1€'90%6* + (K — )€ '90%6% )] vy :[6_

é_ e 29072— @8 & f,,—6,8_f,+6, 8, ff.,e?%7]

Ik k"=

(N1I+]f[D(V1+[fi]?)
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Taking into account the spatial periodicities of the compo-k— 0. In this region the system of equatioft8) becomes
nentsy, (see the Appendjx we can see from relatiorfi®2)  degenerate; therefore, the nonlinear wave equdfbhas to
that the coefficientd,» are spatially independent. They be analyzed by taking into account also the second-order
represent the effective coupling constants between variouserivatives ¢°B,/9z%). One of the ways to find the approxi-
optical eigenmodes at the fundamental and second-harmonimate analytical solutions in this case was described in our
frequency and correspond to the coefficients of the effectiverevious papef18].

nonlinear optical susceptibility of the helical S@t- struc- The problems with SVAA appear also when frequeney 2
ture. is in the vicinity of the band gap. In this region, for a given
The integration of Eq(20) leads to the expression for the fundamental field, only one of the four eigenmodgs,,
dependence of the amplitude of the SHG field satisfies the inequality16). The linearized wave equation

i (2012 (18) is therefore valid only for this mode. Its amplituBg is
By(2)= 7' (Tw) C;l given by the relation
e
- e+ e_
X E Ak’Ak”Dkk’k”z 9z 9z 9z
k' k'=1,....4 2w 2
xsin(Akz2) =- (7) Y AvAxP:
e +Fy, (23 k' K'=1,...,.4
(AkZIZ) ® = [0 > ® - [0} >
X(Ey €. +E € )(E. €,+E, €.).
where (25)
Ak=k(2w) =k’ (@) =K'() 24 The multiplication of relation(25) by é* = —&_ and é* =

— &, , respectively, results in two different equations for the
same quantity dB,/dz):

JB i [2w)\2 .
k) 7(—) S DiwwAcAge 2k

is the wave-vector mismatch afqg are integration constants
that are determined from boundary conditions for the
second-harmonic field. For the modes propagating inéthe

direction these conditions requiﬁ{’yzw(z= 0)=0 and for the Cyt

o e - 9z C/ ww=1..4
modes propagating in the €, direction they giveE, ,,(z (26)
=L)=0, whereL denotes the thickness of the sample. The
dependence d8,(z) as given in Eq(23) is equivalent to the By —i [2w)\? CiAkz
dependence of the amplitude of the SHG field in optically C (E) =5 <?) . k,zl 4D7k’k"Ak'Ak’/e )

homogeneous mediéMaker oscillationg [23]. The optical

inhomogeneity of the Si&* structure modifies only the ex-
pression for the wave-vector mismattk, which, due to the  with the constant€,. andD .. defined as

helical modulation, involves the Bloch instead of the

“usual” wave vectors. WhemAk=0 the SHG process is c —fy (k+qo), C 1 (k=)
phase matched and the amplitude of the second-harmonic k+:—/—2 0 k=" 2 (" Yol
field B,(2) is increasing linear with the coordinate * 1 1+

(27)

28
The procedure based on the SVAA breaks down when 28
frequency 2 is at the reflection band edge, that is, whenand
|
[eiiqozé*i]xtr:[é,é,eiziqoz_é,éq,fku_é+é,fk/+é+é+fk/fkue2iqoz]
Dik’k”: (29)

(N1+[fe D (V1+[fi]?)

The discrepancy between the solutions for the SHG fieldially depleted. The calculation has to be carried out numeri-
obtained on the basis of E(6) or (27) might be considered cally, but this is actually not a serious disadvantage. Namely,
as a measure for the validity of the SVAA in a particular we have not yet specified the procedure to get the field inside
situation. If the discrepancy is large then also the seconcthe liquid crystal at the fundamental frequency, given the
order derivatives ¢°B,./9z%) have to be taken into account. incoming field. This also has to be carried out numerically,
except in the Maugain limit, that is, if the helical pitch is
much longer than the wavelength. We will see that the exact
procedure of finding the fundamental field inside the sample

As the SVAA cannot be applied in several situations it isis very similar to the calculation of the SHG field, so there is
of some interest to calculate the SHG field in a more exacactually little point to use the SVAA to get quantitative re-
way, assuming only that the fundamental field is not substansults.

B. Exact analysis
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We start with the inhomogeneous wave equatidn as- Fi=[FL+.FL_,—koFL +,—koFL _1,
sumingE(F,20) <E(F,w) so that the nonlinear polarization ' ' ' ' (35
on the right-hand side of Eq(5) is independent of Fr=[Fr+ .Fr - KoFr + KoFgr ]

E(F,Zw). We first have to express it in terms of the waves i
incident on the SnE* slab. It is given by the right-hand side ca@n be obtained fronF by
of Eq. (18). The amplitude#\, of the excited eigenwaves are _ _
determined by the boundary conditions for the field at both FL=8F Fr=%7, (36)
t_he s_urfaces, that is, the t.ransverse components and their Qﬁheres_ and S are matrices
rivatives have to be continuous across the boundary. As all
phase relations are kept, the result will also include the in- 1 0
terference effects arising from multiple reflections inside the
slab, which are in a realistic case non-negligible, as we will Se=
see.

In some interesting cases of phase matching the waves 0 —ko
propagating in both directions are needed, so we assume (37)

there is a fieldE, (7, w) = E, o'™? incident from the left and 0
a field Ex(F, ) = Erge ™ 'ko% from the right-hand side of the 0
sample. In order to be able to satisfy the boundary conditions Si= 0

0

|
=~
o
o
© o o o
© o o g

we must also keep the two waves of unknown amplitude
FL(F,0)=F_ge 0% and Fx(F,w) = Froe’*? that are trans-

mitted and reflected from both sides of the slab. i ,
It is advantageous to organize the computation in the folATter these somewhat lengthy preparations, we can write

lowing way, similar to the Berreman formalisf24]. Let all down the boundary conditions at both faces in a very com-
the fields be expressed in the circular basis. From the tw§act form

o O O o

0 ko

transverse components of the internal fief{F, w) we form P(0)A=S F+& , P(L)A=SgF+Ex. (39)
a four-component vector by adding the derivatives as the
third and fourth components: The unknown vectofF is given by the solution of the linear
system
JE, JE_
BB T (30 [P(L)P~(0)S.~ SklF=E&r—P(LIP X(0)&,  (39)

This vector can be expressed in terms of a four-componenthen the internal field4 is expressed as

vector of the excited amplitudes of the eigenwavds _

“Ad as P ‘ A=PHO)[S.F+E] (40
The above procedure is very suitable to implement on a com-
puter. It gives us exactly the internal fielfdr(r* ,w) and as a

whereP(z) is a 4<x4 matrix containing the eigenwavég) as by-product also the field reflected and transmitted on the
the first two rows and their derivatives as the third and fourttslab, including the Bragg reflection at the frequency gap.

E=P(2) A, (3D

rows: We proceed by evaluating the induced polarization at the
second-harmonic frequencys2using the right-hand side of
Ex, .+ Eq. (18). Its two circular components have &fo* and an
= e '9? gpatial dependence. In addition, according to @8),
P(z)= K+ “’E ., n=1...4 (32)  there is a sum of terms with exponential factors of the form
(kn+ Go)Ey, + gk (@)+K'(0))z \where, in general all four values &f (o)

(kn—0o)Ex - andk”(w) are present. One of these terms may be equal to or
near an allowed value f&{2w) and thereforénearly phase
Similar four-component vectors are constructed also fronpatched. Such a term will obviously dominate the SHG

the incoming field<E, (F,w) andEg(f,): field. As we have assumed that there is no depletion, we can
treat each term with a particular phase facf>)? sepa-
EL=[EL + ,EL, - KoEL, + KoEL -], (33 rately.
It is computationally advantageous to write the inhomo-
Er=[ERr,+ Er,— ,—KoEgr +,—KoERg,-]. geneous wave equatidb) in a space-dependent basis

The corresponding unknown fields emanating from both €,=8,e9? §_=@_ e 907 41
faces can be constructed by first forming a four-dimensional
vector Writing the SHG field in the form

F=[F_+,F_ - ,Fr+.,Fr-1 (34 I?”(F,Zw):u+(r*,2w)"é++u,(F,Zw)“e',, (42

Then the two vectors corresponding to the wave equatioiis) takes the form
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azu:—z N [(20)— G]us + a(20)?
572 2o 7 [(2w)*—Qplu++ a(2w)“u=

:Piei[k'(m)+k/'(u))]z (43)

where

H ! ” 2w 2 - =
Pjel[k (@) FK(w)]z= (T) AkIAkné*jXErZ) :EE,wELrN’w )

(44)
Introducing
" U, du_ 45
- u+ 1u—| (92 ] (92 ( )
and
P:[0101P+ IP—]! (46)
we write Eq.(43) in the form
%{4_ MU= Pellk (@) +K'(w)]z (47)
0z ’
whereM is the matrix
0 0 -1 0
0 0 0 -1
Ml 20—z &« —2ig, o | “®
Y (2w)?-q5 0 —2iqo

be present in the case of a parametric process have only
two SHG waves radiated into the free space on the left and

right of the slab with amplitude&, (F,20) =G ,e~k0? and
Gg(F,2w) = Groe'™ % We combine them as in E¢34) into a
four-component vectog. The boundary conditions are then
written in the form

T(0)B+Up(0)=SG, T(L)B+Uy(L)=S:G (53

From these equations the sought amplituGgg and Gy, of
the second-harmonic waves are obtained as the solution of
the linear system

[TI(L)IT4(0)S. — Splg= H(L)H’l(O)[Up(L)—Up(O)(]SA)

Some results of the exact analysis are described in the fol-
lowing section.

IV. PHASE MATCHING

The power conversion from the fundamental to the
second-harmonic beam in thick samples is efficient only
when the phase-matching conditidxk=0 is realized. In
such situations the analysis is simple because the corre-
sponding combination of the eigenmodes strongly dominates
in the SHG process. As the dispersion relatidm) in the
helical SmE* structure is quite complex a variety of differ-
ent phase-matched combinations is expected. Their number
is considerably larger than in the homogeneous Gm-
structure, where at most two types of phase matching can
exist.

The solution of this equation is the sum of a particular solu- By taking into account all the possible valueski{w),

tion U, and a solution of the homogeneous equati¢n
which can be written in a form analogous to Eg1):

U,=1l(z)B, (49)

wherell(z) is the matrix of the eigensolutions of the homo-
geneous equation artgl are the unknown amplitudes.

The particular solution of Eqi46) can be written in the
form

Up=KIT~ () Pellk () + K (w)e, (50)

whereK is a diagonal matrix. WheR' (w) +k”(w) is not
equal to one of the eigenvaluk§2w), its elements are

1

K=K (@) + K (@) —Kn(20)]"

n=1....4. (51

Whenk' (o) +k"(w) =kn(2w), that is, in a phase-matched
situation, themth element ofK becomes

z

Kmm= (2w)’

(52

k"(w), andk(2w), the equatiomM k=0 results in 18 quali-
tatively different phase-matched combinations of the eigen-
modes. When considering a definite sign of the material
color dispersion this number reduces to 10. The 10 combi-
nations corresponding to the case of positive color dispersion
[e(2w)>¢e(w)] are summarized in Table | and are shown
schematically in Fig. 1. Their relation to the helical wave
vectorqg is given in the third column of the table, where it is
evaluated within the approximatiork= * (ko = 0),
which is reasonable everywhere except for the very high fre-
quencies and close to the gdpr modes 2 and )3 The fourth
column shows the frequency region where the combinations
can be realized. Seven of the ten phase-matched combina-
tions appear when the frequency of the optical fields lies
within or in the vicinity of the band gap, while three of them
take place whemw,20> wg, that is, when the wavelength of
the optical beams is much shorter than the helical gitch

The experimental arrangements corresponding to the par-
ticular phase-matched combinations can be classified into
three categories. The first category includes the combinations
(@), (c), and(f) from Fig. 1, which are realized when,2w
> wg and describe the usual arrangements where the funda-
mental beam enters the sample from only one side and the

leading to the expected linear growth of a phase-matchedecond-harmonic beam copropagates out of the sample with

SHG wave.

the fundamental beam. From this point of view the combi-

In order to complete the calculation, we have to satisfynations(c) and (f) are analogous to the type-I and type-II
the boundary conditions. As there are no fields incident orphase matchings in the homogeneous Gm-structure,

the slab at the second-harmonic frequenay(these would

while the combinatior{a) represents a different type related
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TABLE I. Phase-matched combinations of the Bloch wave vectors in th&€Smaterial with the positive color dispersion. The third
column gives the corresponding relations between the average material refractive iflj2es , Ve(w) and the helical wave vectay,.
The fourth column gives the frequency region where certain combinations are realized. The last column gives the effective nonlinear optical
susceptibility calculated within the approximation of the circularly polarized eigenmodes. For an interpretation of the modes associated with
different branches see Fig. 1.

Label Combination Relation witlyg Region of the realization Approximate effective susceptibility
@ R e o o
v TN e e 0
(C) e 2 | (5(20) o))~ 300 sz e

(d) k3e=2kg %[W*’ oo ]~34, 20> wg,0<wg 03(0)
(e ki =k{+kg %[mhqo 20=wg 91(0)
() k3°=k¢+ks %[m_ o~ 20,0> wg

€¢) k3“=k{ +kg Z%J[MFS% 20=3wg 9gs(0)
(h) k3*=k&+kY z?w[er EoTl~a 20,0<wg 92(6)
P 20 _ 0

(i) k5 =k5+kg= %[W]%% 2w at the band edge

1) K3o=ko+ky= 2 2w at the band edge

~Z[VeZo)l~aq

to the helical modulation. When the anisotropyf the Sm- (2wlc)?

C* material is large compared to the color dispersion it can B(z)= K= ag) 9i(0)Ax Agrz. (55)
happen that the “usual” combinatior{s) and (f) cannot be -

realized at all. This relation can be used to estimate the approximate output

The second category, which is related to the combinationSHG power emanating from the helical SB- structure in a
(b), (d), and(h) from Fig. 1, represents the situations with particular experimental arrangement.
counterpropagating fundamental and second-harmonic To calculate the expected SHG power more accurately the
beams. The third category, which includes the combinationgxact calculation procedure described in Sec. Ill has to be
(e), (9), (i), and(j) from Fig. 1 correspond to the “mixed” performed. It can be applied to any of the ten phase-matched
arrangements where the fundamental beams that enter tRguations and also to the non-phase-matched cases. Figure 2
sample from both sides are required and the secondshows the second-harmonic intensity for the linearly polar-
harmonic beams propagate out of the sample in one or botized fundamental beam with fundamental frequency about
directions. For these two categories the momentum assodd.5wg as a function of frequency ar,. The strong phase-
ated with the optical field is not conserved, but its excess omatched peak is the result of four separate phase-matched
deficit is transferred to the material. These are the so-calledombinations: (i), (j), (e), and the inverse of(e) with
umklapp SHG process¢$1,12] branches 2 and 4 of the dispersion spectrum. In each case,

In the last column of the Table | the approximate effectivethe necessary fundamental beam traveling in the direction
nonlinear optical susceptibility for some combinations isopposite to the incoming beam is generated by the reflection
given. It was calculated by assuming that the eigenmodes agg the sample surface. For either the forward or backward
circularly polarized, that is, takingy,f,,,f,»=0 or £~ in  propagating second-harmonic beam, about 75% of the am-
Eq. (8). This assumption is very reasonable for combinationglitude is the result of the combinatiofig and (j) and 25%
(b), (d), (e), (9), and (h) and less appropriate for casa.  of the combinationge) and their equivalent. The total SHG
Within this assumption the effective nonlinear Susceptibilityintensity is a coherent sum of the partial contributions, so it
(22) of a particular phase-matched combination is related tgs very important to know their relative phases, which is
a single circular component of the tenspf® and is ex- possible only with the exact calculation.
pressed in terms of the functiogs(#), which are given in Figure 3 shows the total SHG intensity as a function of
the Appendix. The relation between thg ) and the ampli- sample thickness or equivalentyy for phase-matching case
tude of the second-harmonic field is (9), which is at fundamental frequency~1.5wg. The
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FIG. 2. Total transmittedsolid line) and reflecteddashed ling FIG. 4. SHG intensity for the linearly polarized input beam at

SHG intensity for the linearly polarized fundamental beam with o=~ 1.5wg as a function ok, or g, calculated by the SVAAdot-
frequencyw~0.5wg as a function ofk, or go. The contributing  ted ling or by the exact procedurolid line).

phase-matched combinations are the combinationgj), and (e) ) ) ] )
and the inverse ofe). which corresponds to the situations where the optical wave-

length is much shorter than the helical pitph that is, the

rather complicated fringe pattern is the result of the interferSO-called Mauguin limit of the beam propagatifzt]. All
ence of the waves ai and 2» due to the multiple reflections the other phase-matched combinations are quite insensitive
at the sample surfaces. The chosen frequency is phad@ the color dispersion and mlght be con5|dergd as examples
matched, so the average over the oscillations is proportion&f the nonlinear Bragg rgflechon from the helical structure.
to the square of the sample thicknéss as indicated by the They have no analogy in the homogeneous Gmphase
dotted line. Again, this fringe pattern cannot be obtained bya"d therefore represent different possibilities for efficient
the SVAA. SHG in the helical Sn&* material.

Figure 4 shows the SHG intensity for phase-matched case Due to the different order of nonlinearity some q_ualita-
(g) as a function of frequency, calculated by SVAA and ex_fuvely other phenomena can t_)e observed w_hen studyllng SHG
actly. The difference in this case is primarily due to the in-instead of the THG(or field-induced SHG@ in the helical

terference effects and therefore also depends on the choice ¥juid-crystalline material12—-15. The main distinctions
sample thickness. appear when the harmonic frequency is close to the edge of

the selective reflection band. In this case, as shown originally
by Belyakov and Shipov, a remarkable “additional” en-
V. DISCUSSION hancement of the SHG or THG can appEh8,25,26 The

One of the prominent properties of the optical SHG in the additional” enhancement means that the amplitude of the
helical SmE* phase is that the interference oscillations ofharmonic fieldB,(z) increases faster than linearly with the
the second-harmonic field as given by E2@) originate pri- samp!e thlch.ness. When co.ns_lderlng. the THG this enha_nce—
marily from the helical modulation and not from the color Mentis possible only if a definite relation between the helical
dispersion of the optical dielectric tensor as in the case of th¥ave vectorqe and the color dispersios(3w) —&(w) is
homogeneous media. The color dispersion is important foy@lid. For the analogous enhancement of the SHG, on the
the SHG only in the first category of the phase-matchedontrary, there are no additional requirements on the color

combinations[combinations(a), (c), and (f) from Fig. 1], Qispersion and t'herefore the phenomenon is much more
likely to be experimentally observed. The effect of enhance-

ment is described with the phase-matched combinations
and (j) from Fig. 1.

The geometries related to the phase matching in the re-
gion of the selective reflection band can explain the experi-
mental results of Kajikawat al. [16] and Furukaweet al.

[17], who have observed an increase of the SHG when the
helical pitch of the SnC* material was tuned to the second-

harmonic wavelength. The fundamental beam was linearly
polarized and entered the sample from one side only. The
second-harmonic beam of equal intensity appeared in the
forward as well as the backward direction with respect to the
incident beam. According to our analysis, the linearly polar-

ized incident beam results in both types of fundamental
eigenmodes within the sample. Both of the eigenmodes are

FIG. 3. Total reflectedsolid line) and transmitteddashed ling  then partially back reflected from the back surface of the
SHG intensity for the linearly polarized fundamental beam as esample and consequently the combination of the forward and
function of sample length ab~ 1.50g [phase-matching cagg)]. the backward propagating modes enables the realization of
The dotted line corresponds to thé dependence. the combinationsi), (j), (e), and the inverse ofe) simulta-
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neously. The. theoretic.al cglculation. of the SHG intensity for Xyxz=— [ X112 SiN20— X335 SIN20— 213, COSP]COL @,
such a case is shown in Fig. 2 and is in very good agreement
with the experimental results.

The experiments of Kajikawat al. and Furukaweet al.
are, to our knowledge, the only experimental investigation ofVhere
the optical SHG in the helically twisted S@* phase per- — —

. ) ¢=(27z/p)=0qoz.
formed until now. The reason that such studies are so rare
with respect to the SHG studies in the homogeneous unin the laboratory system, for the circular base,
wound SmE* phase is probably the weak dependence of the
Sm-C* helical pitch on temperature. A considerable varia- _ . _ .
tion of the pitch, which is required in order to observe dif- X+++= ~ (X++-)"FX-—+ == (X-—-)" =~ (V2)? (X
ferent phase-matched combinations by using a fixed funda-
mental frequency, appears only close to the temperature of
the phase transition from the S8 to the SmA or the
cholesteric phase. In this region the nonlinear susceptibility
of the material rapidly decreases with increasing temperature X+--="
and the corresponding low SHG intensity prevents good
quality measurements. This problem may be overcome by
tuning the wavelength of the laser instead of the periodicity
of the material. Another possibility is also to vary the helical x+-0=(X-+0)* =~ (Xo++)* =~ Xo-- = = 7 (Xxxz— Xyyz
pitch not by changing the temperature of the sample but .
rather by changing the concentration of the left- and right- +2iXxy2),
X++0=X--0= —Xo+-— %(Xxxz+)(yyz)v

X220,

- iXxxy+ Xxyy™ inyy)1

1 .
(X—r ) =— (\/—7)3 (Xxxx+3|Xxxy_ 3Xxyy

~iXyyy),

handed compounds at temperatures far below the phase tran-
sition. In this respect different mixtures of SGi materials
exhibiting a large nonlinear optical susceptibility and at the
same time having the capability to vary the pitch by varying
the composition would be very appropriate to optimize the
SHG signal. AMATHEMATICA package that gives exact nu-
merical solutions for the SHG field in the case of the wave
propagation along the S@* helical axis in various experi-
mental geometries can be found on the Internet at location

1
X+00~ _(X—oo)* =~ Xoo-— (Xoo+)* == E (Xxzz

+iXyzz)v

X000~ Xzzz:

http://optlab.ijs.si/lcpro

APPENDIX: COMPONENTS OF THE x® IN VARIOUS
COORDINATE SYSTEMS

In the laboratory system; for the Cartesian base

XYoo= — 3[ X112 COS O+ X330 SIP O+ Y13, SIFO]cOS @ Sing

— X222 SiMg,

Xxxy=[ X112 COS 0+ X337 SIP O+ X137 SIN20]
X c0Sp(3 coZ@—2)+ X209, COSp SIFe,

Xxxz= 3[ X112 SIN20— X33, SIN20— 213, COSP]SiN2p,

Xxyy= — [ X112 COS 0+ Y33, SINF O
+ X132 SiN20]sin ¢(3 sirfe—2) — x220 COS ¢ Sing,

Xyyy=3[ X112 COS 0+ X33, SIMP O+ x 13, Sin20]cosp sife

+ X220 COS'p,
nyZ: - %[XllZ Sin20— X332 Sin26— 2X132 COS%]SiﬂZ(p,
Xz2x= — [ X112 SIP 0+ X332 COS 60— X137 SiN26]sineg,

Xz2y=[ X112 SINF 0+ X335 COS' 6— Y13, Sin26]cosp,

The componentg;j, in the circular base are symmetric only
with respect to the permutations of the last two indices. By
incorporating the previously given relations in the Cartesian
base these expressions transform to

Xe+r=—(Xee )" =x-p=—(x- )"
i

= - (XllZ C0520+ X332 S|r\20

(1/2)3

+ X123 S|n26+ X222) e_iqoz,

i .
X+--==(X-4+4)* == —= (8112 COS O+ 333, SIN*0

(\2)
+3 X123 SIN20— x99 €907,
* * l
X+-0=(X=+0)"=—(Xo++)" = _Xo——:§ [(X112

— X332)SIN20— 21,3 cOsH]e2'%0?,

i .
X+00=—(X-00* =~ Xoo- =(Xo0+)*=— ﬁ (X112 sinfg

+ X332 COS 0— X123 SiN20) €907,

X++0=X——0= X0+ = Xo00=0-

The components of the tensor of the transverse nonlinear
susceptibiltyy(?) are then given by



a )
Xtr+++= (X, ——-)*= X+++_2X++oTeilqoz
' Y 2
2
a? _ .
tX+005 € Iqoz):|91(9)e o,
* a +iqgz
Xtr,++—= ~ (Xtr,——+)" = X++—+X++oﬁe 0
X+ oieiqoz—)(+ooa_2):igz(@)eiqoZ
oG > ,
* a iggz
Xtr,+— =~ (Xtr,—++)* = X+f—+2X+—oEe 0

2

+X a_eziqoz =i (0)63iq02
+00 5 Js )
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where the functiongj;(6) are

g.(0)=— [ X114 COS 0+ a? si? @) + a3 Sirf

((3

+a2 cog0) + x124SiN20) (1—a?) + x223],

1 . .
g,(0)= AT [ x114CO¥—a Sinf)?+ ya3ASinf+a cosd)?

+ X124 SiN20+ 2a cosP—a? sin20) + x2,,],

= 3 cog0+2a sin20—a? sinfo
93(0)= \/—)3 [x11d = )

+ x33d — 3 Sirf6— 2a sin2—a? cos )
+ x124 — 3 sin29— 4a cosP+ a? sin26) + x 2,
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