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Phase-matched optical second-harmonic generation in helically twisted smectic-C* phase

I. Drevenšek Olenik and M. Cˇ opič
Department of Physics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

and Jožef Stefan Institute, Jamova 39, 1111 Ljubljana, Slovenia
~Received 27 January 1997!

Phase matching for optical second-harmonic generation in the helically twisted smectic-C* liquid-crystalline
phase is analyzed theoretically. Ten distinctive phase-matched combinations of the fundamental and the
second-harmonic eigenmodes exist. The effective second-order nonlinear optical susceptibility and the relation
between the optical wave vectors and the wave vector of helical structure are determined for each of the
combinations. The results obtained within the standard approximation of the slowly varying amplitude are
compared with the exact numerical solutions of the nonlinear wave equation. The discrepancy between the
approximative and exact results is crucial only for the two phase-matched combinations that are realized when
the second-harmonic frequency is close to the selective reflection band. In this case an additional enhancement
of the second-harmonic beam can appear.@S1063-651X~97!05707-3#

PACS number~s!: 42.70.Df, 42.65.Ky, 77.84.Nh
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I. INTRODUCTION

The phenomenon of optical second-harmonic genera
~SHG! in the ferroelectric smectic-C* ~Sm-C* ! phase has
recently become very attractive from a fundamental as w
as an applicable point of view. Among different SHG cha
acteristics, the possibility for phase matching was inve
gated most extensively. For this purpose the spontaneo
formed Sm-C* helix was unwound by application of a stat
external electric field@1–9#. Phase matching in the resultin
homogeneous Sm-C* phase was then achieved by a stand
technique of compensation of material color dispersion by
birefringence@10#.

In addition to the standard phase-matching technique,
helical structure of the Sm-C* phase provides some particu
lar possibilities to achieve an efficient harmonic generati
The optical wave-vector mismatch can be compensated
the wave vector associated with the spatial periodicity of
helix. This is similar to the phenomenon of phase match
in periodically poled materials@11#. In liquid crystals such
possibilities were demonstrated and analyzed by Shelton
Shen for optical third-harmonic generation~THG! in the
cholesteric phase@12–14#. Later, similar features were foun
by Saha for the electric-field-induced SHG@15#.

In this paper we study the phenomenon of optical SHG
the twisted Sm-C* structure. The case of optical beam
propagating along the helical axis is examined. The ex
numerical solutions of the nonlinear wave equation are
lated to the analytical solutions within the standard appro
mation of the slowly varying amplitude. Possible phas
matched combinations of optical waves are determined
their relation to the helical periodicity of the structure is an
lyzed and discussed. The corresponding effective nonlin
susceptibility coefficients are found. The main similariti
and differences between SHG in the Sm-C* phase and THG
or field-induced SHG in the cholesteric phase are a
pointed out. In the discussion we show that our results
explain the prominent increase of the SHG signal, which
been reported by Kajikawaet al. @16# and Furukawaet al.
@17# for the situation when the wavelength of the secon
561063-651X/97/56~1!/581~11!/$10.00
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harmonic beam coincided with the period of the Sm-C* he-
lix. This particular case has already been analyzed wit
some approximations in our previous paper@18#.

II. OPTICAL PARAMETERS OF THE Sm- C* PHASE

The bulk ferroelectric Sm-C* phase is characterized by
helical spatial modulation of the molecular tilt and the spo
taneous electrical polarization. The direction of the modu
tion is normal to the smectic layers. The period of the he
helical pitchp, is usually of the same order of magnitude
the wavelengths of the visible light. This feature has a stro
influence on the optical properties of the Sm-C* phase.

The local characteristics of the optical dielectric tenso«
and the tensor of the second-order nonlinear optical sus
tibility x (2) are determined by the localC2 symmetry of the
Sm-C* structure. In compliance with this symmetry« has 3
andx (2) has 13 independent nonzero components. The o
all permutation symmetry of thex (2) ~Kleinman’s symmetry!
reduces the total number of its independent components
This symmetry is valid when the wavelength of the fund
mental and the second-harmonic optical field is far aw
from any absorbtion bands of the liquid crystal. In the loc
Cartesian system (eW1 ,eW2 ,eW3) oriented so that theeW2 axis is
parallel to the local twofold axis and theeW3 axis is parallel to
the principal axis of« corresponding to the largest princip
value, the nonzero components are

«11, «22, «33 ~1!

and

x1235x1325x2135x2315x3125x321,

x1125x1215x211,
~2!

x3325x3235x233,

x222.
581 © 1997 The American Physical Society
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582 56I. DREVENŠEK OLENIK AND M. ČOPIČ
An important optical parameter of the structure is also
angleu between theeW3 axis and the smectic layers norma
generally known as the optical tilt angle of the Sm-C* phase.

The orientation of the local coordinate axes (eW1 ,eW2 ,eW3)
varies in space in accordance with the helical modulation
a fixed laboratory Cartesian system (eW x ,eW y ,eW z), with theeW z
axis parallel to the smectic layers normal, theeW i are ex-
pressed in the form

eW35~sinu cosq0z!eW x1~sinu sin q0z!eW y1~cosu!eW z ,

eW25~2sinq0z!eW x1~cosq0z!eW y , ~3!

eW15eW23eW3 ,

whereq052p/p is the wave vector of the modulation. Th
components of« andx (2) in the laboratory system are the
given by

« i j5Rii 8Rj j 8« i 8 j 8 , x i jk5Rii 8Rj j 8Rkk8x i 8 j 8k8 , ~4!

for i , j ,k5x,y,z and i 8, j 8,k851,2,3, whereR is the trans-
formation matrix from the local to the laboratory syste
The result of the transformation is given in the Append
From ten different components of thex (2) in the laboratory
system onlyxzzz50, while all the others have nonzero va
ues. The relationxzzz50 comes out because theeW z axis is
everywhere perpendicular to the local twofold axiseW2 .

III. WAVE PROPAGATION

The process of optical SHG in the helically modulat
Sm-C* structure is governed by the nonlinear wave equat

¹W 3¹W 3EW ~rW,2v!2S 2v

c D 2«EW ~rW,2v!

5S 2v

c D 2x~2!:EW ~rW,v!EW ~rW,v!, ~5!

which describes the relation between the fundamental op
field EW (rW,v) and the second harmonic fieldEW (rW,2v). In
typical experimental situations both fields can be conside
to be plane waves and the power depletion of the fundam
tal beam can be neglected. Within these assumptions
taking that the fundamental beam enters the sample in
direction of the helical axis~eW z axis!, the solutions of Eq.~5!
can be expressed by

EW ~rW,v!5 (
k51

4

AkEW k,v~z!,

~6!

EW ~rW,2v!5 (
k51

4

Bk~z!EW k,2v~z!,

whereEW k,v(z) and EW k,2v(z) correspond to the normalize
solutions of the homogeneous wave equation

¹W 3¹W 3EW k~z!2
v2

c2
«EW k~z!50 ~7!
e
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at the fundamental and at the second-harmonic freque
The amplitudesAk are determined by the boundary cond
tions related to a selected experimental arrangement.

The solutions of the homogeneous wave equation~7! in
the helically modulated Sm-C* structure have been studie
by different authors@19,20#. It was shown that for propaga
tion along the helical axis the transverse component of
optical field of the eigenmodesEW k

tr5EW k2eW zEW k is analogous
to the de Vries solutions for the cholesteric phase@21,22#.
These are the Bloch wave fields

EW k
tr5Ek,1eW 11Ek,2eW 25S 2 f ke

i ~k1q0!z

A11u f ku2
D S 2

eW x1 ieW y
A2 D

1S ei ~k2q0!z

A11u f ku2
D S eW x2 ieW y

A2 D , ~8!

where eW 657(eW x6 ieW y)/& denote the unit vectors of th
circular base. The dispersion relationk(v) and the polariza-
tion factor f k of these fields are given by

k56~ ~k0
2«̄1q0

2!6A4k02«̄q021a2k0
4!1/2 ~9!

and

f k5
~k2q0!

22k0
2«̄

ak0
2 5

ak0
2

~k1q0!
22k0

2«̄
. ~10!

The introduced parametersk0 , «̄, anda are

k05
v

c
,

«̄5
1

2 S «111«221
~«332«11!«11 sin

2 u

«11 sin
2 u1«33 cos

2 u D , ~11!

a5 «̄2«22.

The longitudinal electric field of the eigenmodes is expres
as

Ek,05eW zEW k5
a

A2
~2Ek,1e

2 iq0z1Ek,2e
1 iq0z!, ~12!

wherea is the tilt-dependent quantity given as

a52
~«332«11!sin u cosu

«11 sin
2 u1«33 cos

2 u
. ~13!

In the SHG process the longitudinal component of the fu
damental fieldEk,0 contributes to the generation of the tran
verse component of the second-harmonic fieldEW k,2v

tr and vice
versa. This interaction brings some additional ‘‘mixing
terms to the solutions of the nonlinear wave equation~5!.
Such terms do not exist in the case of the cholesteric ph
whereu5p/2 and the longitudinal field vanishes.

Two of the four eigenmodes as given by Eq.~8! corre-
spond to optical beams that propagate in the direction of
eW z axis and the other two to the equivalent beams that pro
gate in the direction of the2eW z axis. In the dispersion spec
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FIG. 1. Phase-matching combinations shown on the dispersion curves of the optical eigenmodes of the Sm-C* phase. The modes
corresponding to branches 1 and 2 propagate in theeW z direction, while the modes associated with branches 3 and 4 propagate in the2eW z
direction. Modes 1 and 3 are polarized approximately aseW 1 and modes 2 and 4 aseW 2 . This approximation breaks down whenv@vB and
for modes 2 and 3 also in the vicinity of the band gap where the modes become linearly polarized. The band-gap characterizes
where the two values ofk are imaginary and the corresponding modes are Bragg reflected from the helical structure. The symbolvB is used
to denote the Bragg frequencyvB5q0c/A«̄. The labeling of the combinations is in accordance with Table I.
el
ris

.

al

the
trum shown in Fig. 1 the corresponding branches are lab
as branches 1,2 and 3,4 respectively. The main characte
of the dispersion spectrumk(v) is the gap inside which two
eigenvalues ofk, as found from Eq.~9!, become imaginary
ed
tic
In the region of this gap the circularly polarized optic
waves that match with the handedness of the Sm-C* helix
cannot propagate, but experience Bragg reflection from
structure.
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The form ~8! of the optical eigenmodes suggests that
manipulation of the nonlinear wave equation~5! would be
more convenient by using the circular base (eW 1 ,eW 2 ,eW0) of
the laboratory frame. Within this base the tensor of the n
linear optical susceptibilityx (2) transforms to

x i jk5Tii 8Tj j 8
* Tkk8

* x i 8 j 8k8 , i , j ,k51,2,0;

i 8, j 8,k85x,y,z, ~14!

where the transformation matrixT is

T5F 21

A2
2 i

A2
0

1

A2
2 i

A2
0

0 0 1

G . ~15!

The result of the transformation is given in the Append
The main benefit of using the circular base is that the f
independent components ofx (2) are separated. They exhib
distinctive spatial periodicities 3q0 , 2q0 , or q0 with respect
to the helical structure.

A. Slowly varying amplitude approximation

The standard simplification used in solving the nonline
wave equation is the slowly varying amplitude approxim
tion ~SVAA! @23#. It assumes that in Eq.~5! the second-orde
derivatives ofBk(z) can be neglected. In the helically mod
lated Sm-C* structure the applicability of the SVAA is re
stricted by the condition

U]2Bk

]z2 U!U2@k~2v!6q0#
]Bk

]z U ~16!

It is evident that this condition is violated whenk(2v)
'6q0 , that is, when the second-harmonic frequency 2v is
much lower than the Bragg frequencyvB5q0c/ «̄(2v).
e

-

.
r

r
-

Within the SVAA we get from Eq.~5! a set of two linear
equations

(
k
2S ]Bk

]z D S ]EW k,2v
tr

]z
D 52S 2v

c D 2 (
k8,k9

Ak8Ak9x
~2!:EW k8,vE

W
k9,v

~17!

for the two eigenmodesEW k,2v that satisfy relation~16!. In the
circular base the set of equations~17! becomes

(
k5I,II

2S ]Bk

]z D S ]Ek,1
2v

]z
eW 11

]Ek,2
2v

]z
eW 2D

52S 2v

c D 2 (
k8,k951,...,4

Ak8 ,Ak9x tr
~2! :

3~Ek8,1
v eW 11Ek8,2

v eW 2!~Ek9,1
v eW 11Ek9,2

v eW 2!,

~18!

where indices I and II designate the eigenmodes at
second-harmonic frequency and the tensor of the ‘‘tra
verse’’ nonlinear susceptibilityx tr

(2) is defined by

x tr
~2! :EW k8

tr EW k9
tr

5x~2!:EW k8E
W
k9 ~19!

The components ofx tr
(2) are calculated on the basis of th

relation ~12! and are explicitly given in the Appendix. By
introducingx tr

(2) , both sides of Eq.~18! are expressed en
tirely in terms of the transverse components of the fie
which simplifies further calculation and is also appropria
when considering boundary conditions at the sample s
faces.

Multiplication of Eq. ~18! by eW 1* 52eW 2 andeW 2* 52eW 1 ,
respectively, results in the system of two equations
(]BI /]z) and (]BII /]z), which is given as
Ck

]Bk

]z
5

2 i

2 S 2v

c D 2 (
k8,k951,...,4

Dkk8k9Ak8Ak9e
2 i @k~2v!2k8~v!2k9~v!#z, k5I,II, ~20!

where

CI~A11u f Iu2!5~kI1q0!~kII2q0! f I2~kI2q0!~kII1q0! f II52CII~A11u f IIu2! ~21!

and

D I,k8k95
@~kII1q0! f IIe

iq0zeW 2* 1~kII2q0!e
2 iq0zeW 1* !]x tr :@eW 2eW 2e

22iq0z2eW 2eW 1 f k92eW 1eW 2 f k81eW 1eW 1 f k8 f k9e
2iq0z#

~A11u f k8u
2!~A11u f k9u

2!
,

~22!

D II, k8k95
@~kI1q0! f Ie

iq0zeW 2* 1~kI2q0!e
2 iq0zeW 1* !]x tr :@eW 2eW 2e

22iq0z2eW 2eW 1 f k92eW 1eW 2 f k81eW 1eW 1 f k8 f k9e
2iq0z#

~A11u f k8u
2!~A11u f k9u

2!
,
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Taking into account the spatial periodicities of the comp
nentsx tr ~see the Appendix!, we can see from relations~22!
that the coefficientsDkk8k9 are spatially independent. The
represent the effective coupling constants between var
optical eigenmodes at the fundamental and second-harm
frequency and correspond to the coefficients of the effec
nonlinear optical susceptibility of the helical Sm-C* struc-
ture.

The integration of Eq.~20! leads to the expression for th
dependence of the amplitude of the SHG field

Bk~z!5
2 i

2 S 2v

c D 2FCk
21

3 (
k8,k951,...,4

Ak8Ak9Dkk8k9z

3sin~Dkz/2!

~Dkz/2!
e2 iDkz/2G1Fk , ~23!

where

Dk5k~2v!2k8~v!2k9~v! ~24!

is the wave-vector mismatch andFk are integration constant
that are determined from boundary conditions for t
second-harmonic field. For the modes propagating in theeW z
direction these conditions requireEW k,2v

tr (z50)50 and for the

modes propagating in the2eW z direction they giveEW k,2v
tr (z

5L)50, whereL denotes the thickness of the sample. T
dependence ofBk(z) as given in Eq.~23! is equivalent to the
dependence of the amplitude of the SHG field in optica
homogeneous media~Maker oscillations! @23#. The optical
inhomogeneity of the Sm-C* structure modifies only the ex
pression for the wave-vector mismatchDk, which, due to the
helical modulation, involves the Bloch instead of th
‘‘usual’’ wave vectors. WhenDk50 the SHG process is
phase matched and the amplitude of the second-harm
field Bk(z) is increasing linear with the coordinatez.

The procedure based on the SVAA breaks down wh
frequency 2v is at the reflection band edge, that is, wh
el

ar
n
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a
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k→0. In this region the system of equations~18! becomes
degenerate; therefore, the nonlinear wave equation~5! has to
be analyzed by taking into account also the second-o
derivatives (]2Bk /]z

2). One of the ways to find the approx
mate analytical solutions in this case was described in
previous paper@18#.

The problems with SVAA appear also when frequencyv
is in the vicinity of the band gap. In this region, for a give
fundamental field, only one of the four eigenmodesEW k,2v
satisfies the inequality~16!. The linearized wave equatio
~18! is therefore valid only for this mode. Its amplitudeBk is
given by the relation

2S ]Bk

]z D S ]Ek,1
2v

]z
eW 11

]Ek,2
2v

]z
eW 2D

52S 2v

c D 2 (
k8,k951,...,4

Ak8Ak9x tr
~2! :

3~Ek8,1
v eW 11Ek8,2

v eW 2!~Ek9,1
v eW 11Ek9,2

v eW 2!.

~25!

The multiplication of relation~25! by eW 1* 52eW 2 and eW 2* 5
2eW 1 , respectively, results in two different equations for t
same quantity (]Bk /]z):

Ck1S ]Bk

]z D5
2 i

2 S 2v

c D 2 (
k8,k951,...,4

D1k8k9Ak8Ak9e
2 iDkz,

~26!

Ck2S ]Bk

]z D5
2 i

2 S 2v

c D 2 (
k8,k951,...,4

D2k8k9Ak8Ak9e
2 iDkz,

~27!

with the constantsCk6 andD6k8k9 defined as

Ck15
2 f k

A11u f ku2
~k1q0!, Ck25

1

A11u f ku2
~k2q0!,

~28!

and
D6k8k95
@e7 iq0zeW 6* #x tr :@eW 2eW 2e

22iq0z2eW 2eW 1 f k92eW 1eW 2 f k81eW 1eW 1 f k8 f k9e
2iq0z#

~A11u f k8u
2!~A11u f k9u

2!
~29!
eri-
ely,
ide
he
lly,
is
act
ple
is
e-
The discrepancy between the solutions for the SHG fi
obtained on the basis of Eq.~26! or ~27! might be considered
as a measure for the validity of the SVAA in a particul
situation. If the discrepancy is large then also the seco
order derivatives (]2Bk /]z

2) have to be taken into accoun

B. Exact analysis

As the SVAA cannot be applied in several situations it
of some interest to calculate the SHG field in a more ex
way, assuming only that the fundamental field is not subs
d

d-

ct
n-

tially depleted. The calculation has to be carried out num
cally, but this is actually not a serious disadvantage. Nam
we have not yet specified the procedure to get the field ins
the liquid crystal at the fundamental frequency, given t
incoming field. This also has to be carried out numerica
except in the Maugain limit, that is, if the helical pitch
much longer than the wavelength. We will see that the ex
procedure of finding the fundamental field inside the sam
is very similar to the calculation of the SHG field, so there
actually little point to use the SVAA to get quantitative r
sults.
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We start with the inhomogeneous wave equation~5!, as-
sumingE(rW,2v)!E(rW,v) so that the nonlinear polarizatio
on the right-hand side of Eq.~5! is independent of
EW (rW,2v). We first have to express it in terms of the wav
incident on the Sm-C* slab. It is given by the right-hand sid
of Eq. ~18!. The amplitudesAk of the excited eigenwaves ar
determined by the boundary conditions for the field at b
the surfaces, that is, the transverse components and the
rivatives have to be continuous across the boundary. As
phase relations are kept, the result will also include the
terference effects arising from multiple reflections inside
slab, which are in a realistic case non-negligible, as we
see.

In some interesting cases of phase matching the wa
propagating in both directions are needed, so we ass
there is a fieldEW L(rW,v)5EW L0e

ik0z incident from the left and
a fieldEW R(rW,v)5EW R0e

2 ik0z from the right-hand side of the
sample. In order to be able to satisfy the boundary conditi
we must also keep the two waves of unknown amplitu
FW L(rW,v)5FW L0e

2 ik0z andFW R(rW,v)5FW R0e
ik0z that are trans-

mitted and reflected from both sides of the slab.
It is advantageous to organize the computation in the

lowing way, similar to the Berreman formalism@24#. Let all
the fields be expressed in the circular basis. From the
transverse components of the internal fieldEW tr(rW,v) we form
a four-component vector by adding the derivatives as
third and fourth components:

E5FE1 ,E2 ,
]E1

]z
,

]E2

]z G ~30!

This vector can be expressed in terms of a four-compon
vector of the excited amplitudes of the eigenwavesA
5@Ak# as

E5P~z!A, ~31!

whereP(z) is a 434 matrix containing the eigenwaves~8! as
the first two rows and their derivatives as the third and fou
rows:

P~z!5F Ekn ,1

Ekn ,2

~kn1q0!Ekn ,1

~kn2q0!Ekn ,2

G , n51...,4. ~32!

Similar four-component vectors are constructed also fr
the incoming fieldsEW L(rW,v) andEW R(rW,v):

EL5@EL,1 ,EL,2 ,k0EL,1 ,k0EL,2 ,#,
~33!

ER5@ER,1 ,ER,2 ,2k0ER,1 ,2k0ER,2#.

The corresponding unknown fields emanating from b
faces can be constructed by first forming a four-dimensio
vector

F5@FL,1 ,FL,2 ,FR,1 ,FR,2#. ~34!

Then the two vectors corresponding to
h
de-
ll
-
e
ll
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e
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l-

o

e
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h
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FL5@FL,1 ,FL,2 ,2k0FL,1 ,2k0FL,2#,
~35!

FR5@FR,1 ,FR,2 ,k0FR,1 ,k0FR,2#

can be obtained fromF by

FL5SLF, FR5SRF, ~36!

whereSL andSR are matrices

SR5F 1 0 0 0

0 1 0 0

2k0 0 0 0

0 2k0 0 0

G ,
~37!

SR5F 0 0 1 0

0 0 0 1

0 0 k0 0

0 0 0 k0

G .
After these somewhat lengthy preparations, we can w
down the boundary conditions at both faces in a very co
pact form

P~0!A5SLF1EL , P~L !A5SRF1ER . ~38!

The unknown vectorF is given by the solution of the linea
system

@P~L !P21~0!SL2SR#F5ER2P~L !P21~0!EL ~39!

Then the internal fieldA is expressed as

A5P21~0!@SLF1EL# ~40!

The above procedure is very suitable to implement on a c
puter. It gives us exactly the internal fieldEW tr(rW,v) and as a
by-product also the field reflected and transmitted on
slab, including the Bragg reflection at the frequency gap.

We proceed by evaluating the induced polarization at
second-harmonic frequency 2v using the right-hand side o
Eq. ~18!. Its two circular components have aneiq0z and an
e2 iq0z spatial dependence. In addition, according to Eq.~18!,
there is a sum of terms with exponential factors of the fo
ei @k8(v)1k9(v)#z, where, in general all four values ofk8(v)
andk9(v) are present. One of these terms may be equal t
near an allowed value fork(2v) and therefore~nearly! phase
matched. Such a term will obviously dominate the SH
field. As we have assumed that there is no depletion, we
treat each term with a particular phase factoreik(2v)z sepa-
rately.

It is computationally advantageous to write the inhom
geneous wave equation~5! in a space-dependent basis

ẽ15eW 1e
iq0z, ẽ25eW 2e

2 iq0z. ~41!

Writing the SHG field in the form

EW tr~rW,2v!5u1~rW,2v!ẽ11u2~rW,2v!ẽ2 , ~42!

the wave equation~5! takes the form
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]2u6

]z2
72iq0

]u6

]z
1@~2v!22q0

2#u61a~2v!2u7

5P6e
i @k8~v!1k9~v!#z ~43!

where

P6e
i @k8~v!1k9~v!#z52S 2v

c D 2Ak8Ak9eW 6* x tr
~2! :EW k,v

tr EW k9,v
tr .

~44!

Introducing

U5Fu1 ,u2 ,
]u1

]z
,
]u2

]z G ~45!

and

P5@0,0,P1 ,P2#, ~46!

we write Eq.~43! in the form

]U
]z

1MU5Pei @k8~v!1k9~v!#z, ~47!

whereM is the matrix

MF 0 0 21 0

0 0 0 21

~2v!22q0
2 a 22iq0 0

a ~2v!22q0
2 0 22iq0

G . ~48!

The solution of this equation is the sum of a particular so
tion Up and a solution of the homogeneous equationUh ,
which can be written in a form analogous to Eq.~31!:

Uh5P~z!B, ~49!

whereP(z) is the matrix of the eigensolutions of the hom
geneous equation andB are the unknown amplitudes.

The particular solution of Eq.~46! can be written in the
form

Up5KP21~z!Pei @k8~v!1k9~v!#z, ~50!

whereK is a diagonal matrix. Whenk8(v)1k9(v) is not
equal to one of the eigenvaluesk(2v), its elements are

Knn5
1

i @k8~v!1k9~v!2kn~2v!#
, n51...,4. ~51!

Whenk8(v)1k9(v)5km(2v), that is, in a phase-matche
situation, themth element ofK becomes

Kmm5
z

km~2v!
, ~52!

leading to the expected linear growth of a phase-matc
SHG wave.

In order to complete the calculation, we have to sati
the boundary conditions. As there are no fields incident
the slab at the second-harmonic frequency 2v ~these would
-

d

y
n

be present in the case of a parametric process!, we have only
two SHG waves radiated into the free space on the left
right of the slab with amplitudesGW L(rW,2v)5GW L0e

2 ik0z and
GW R(rW,2v)5GW R0e

ik0z. We combine them as in Eq.~34! into a
four-component vectorG. The boundary conditions are the
written in the form

P~0!B1Up~0!5SLG, P~L !B1Up~L !5SRG ~53!

From these equations the sought amplitudesGW L0 andGW R0 of
the second-harmonic waves are obtained as the solutio
the linear system

@P~L !P21~0!SL2SR#G5P~L !P21~0!@Up~L !2Up~0!#.
~54!

Some results of the exact analysis are described in the
lowing section.

IV. PHASE MATCHING

The power conversion from the fundamental to t
second-harmonic beam in thick samples is efficient o
when the phase-matching conditionDk50 is realized. In
such situations the analysis is simple because the co
sponding combination of the eigenmodes strongly domina
in the SHG process. As the dispersion relationk(v) in the
helical Sm-C* structure is quite complex a variety of differ
ent phase-matched combinations is expected. Their num
is considerably larger than in the homogeneous Sm-C*
structure, where at most two types of phase matching
exist.

By taking into account all the possible values ofk8(v),
k9(v), andk(2v), the equationDk50 results in 18 quali-
tatively different phase-matched combinations of the eig
modes. When considering a definite sign of the mate
color dispersion this number reduces to 10. The 10 com
nations corresponding to the case of positive color dispers
@ «̄(2v). «̄(v)# are summarized in Table I and are show
schematically in Fig. 1. Their relation to the helical wa
vectorq0 is given in the third column of the table, where it
evaluated within the approximationk56(k0A«̄6q0),
which is reasonable everywhere except for the very high
quencies and close to the gap~for modes 2 and 3!. The fourth
column shows the frequency region where the combinati
can be realized. Seven of the ten phase-matched comb
tions appear when the frequency of the optical fields l
within or in the vicinity of the band gap, while three of the
take place whenv,2v@vB , that is, when the wavelength o
the optical beams is much shorter than the helical pitchp.

The experimental arrangements corresponding to the
ticular phase-matched combinations can be classified
three categories. The first category includes the combinat
~a!, ~c!, and ~f! from Fig. 1, which are realized whenv,2v
@vB and describe the usual arrangements where the fu
mental beam enters the sample from only one side and
second-harmonic beam copropagates out of the sample
the fundamental beam. From this point of view the com
nations~c! and ~f! are analogous to the type-I and type-
phase matchings in the homogeneous Sm-C* structure,
while the combination~a! represents a different type relate
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TABLE I. Phase-matched combinations of the Bloch wave vectors in the Sm-C* material with the positive color dispersion. The thir
column gives the corresponding relations between the average material refractive indicesA«̄(2v),A«̄(v) and the helical wave vectorq0 .
The fourth column gives the frequency region where certain combinations are realized. The last column gives the effective nonline
susceptibility calculated within the approximation of the circularly polarized eigenmodes. For an interpretation of the modes associ
different branches see Fig. 1.

Label Combination Relation withq0 Region of the realization Approximate effective susceptibility

~a! k1
2v52k1

v
2v

c
@A«̄~2v!2A«̄~v!#'q0

2v,v@vB g1(u)

~b! k1
2v52k3

v
2v

c
@A«̄~2v!1A«̄~v!#'q0

2v,v,vB g1(u)

~c! k2
2v52k1

v
2v

c
@A«̄~2v!2A«̄~v!#'3q0

2v,v@vB

~d! k2
2v52k3

v
2v

c
@A«̄~2v!1A«̄~v!#'3q0

2v.vB ,v,vB g3(u)

~e! k1
2v5k1

v1k3
v

2v

c
@A«̄~2v!#'q0

2v>vB g1(u)

~f! k2
2v5k1

v1k2
v

2v

c
@A«̄~2v!2A«̄~v!#'q0

2v,v@vB

~g! k2
2v5k1

v1k3
v

2v

c
@A«̄~2v!#'3q0

2v>3vB g3(u)

~h! k2
2v5k3

v1k4
v

2v

c
@A«̄~2v!1A«̄~v!#'q0

2v,v,vB g2(u)

~i! k2
2v5k2

v1k3
v50 2v

c
@A«̄~2v!#'q0

2v at the band edge

~j! k2
2v5k1

v1k4
v50 2v

c
@A«̄~2v!#'q0

2v at the band edge
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to the helical modulation. When the anisotropya of the Sm-
C* material is large compared to the color dispersion it c
happen that the ‘‘usual’’ combinations~c! and ~f! cannot be
realized at all.

The second category, which is related to the combinati
~b!, ~d!, and ~h! from Fig. 1, represents the situations wi
counterpropagating fundamental and second-harm
beams. The third category, which includes the combinati
~e!, ~g!, ~i!, and ~j! from Fig. 1 correspond to the ‘‘mixed’’
arrangements where the fundamental beams that ente
sample from both sides are required and the seco
harmonic beams propagate out of the sample in one or
directions. For these two categories the momentum ass
ated with the optical field is not conserved, but its excess
deficit is transferred to the material. These are the so-ca
umklapp SHG processes@11,12#

In the last column of the Table I the approximate effect
nonlinear optical susceptibility for some combinations
given. It was calculated by assuming that the eigenmodes
circularly polarized, that is, takingf k , f k8 , f k950 or 6` in
Eq. ~8!. This assumption is very reasonable for combinatio
~b!, ~d!, ~e!, ~g!, and ~h! and less appropriate for case~a!.
Within this assumption the effective nonlinear susceptibi
~22! of a particular phase-matched combination is related
a single circular component of the tensorx tr

(2) and is ex-
pressed in terms of the functionsgi(u), which are given in
the Appendix. The relation between thegi(u) and the ampli-
tude of the second-harmonic field is
n

s

ic
s

the
d-
th
ci-
r
d

re

s

o

Bk~z!5
~2v/c!2

~k6q0!
gi~u!Ak8Ak9z. ~55!

This relation can be used to estimate the approximate ou
SHG power emanating from the helical Sm-C* structure in a
particular experimental arrangement.

To calculate the expected SHG power more accurately
exact calculation procedure described in Sec. III has to
performed. It can be applied to any of the ten phase-matc
situations and also to the non-phase-matched cases. Fig
shows the second-harmonic intensity for the linearly pol
ized fundamental beam with fundamental frequency ab
0.5vB as a function of frequency orq0 . The strong phase
matched peak is the result of four separate phase-mat
combinations: ~i!, ~j!, ~e!, and the inverse of~e! with
branches 2 and 4 of the dispersion spectrum. In each c
the necessary fundamental beam traveling in the direc
opposite to the incoming beam is generated by the reflec
at the sample surface. For either the forward or backw
propagating second-harmonic beam, about 75% of the
plitude is the result of the combinations~i! and ~j! and 25%
of the combinations~e! and their equivalent. The total SHG
intensity is a coherent sum of the partial contributions, so
is very important to know their relative phases, which
possible only with the exact calculation.

Figure 3 shows the total SHG intensity as a function
sample thickness or equivalentlyq0 for phase-matching cas
~g!, which is at fundamental frequencyv'1.5vB . The
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rather complicated fringe pattern is the result of the interf
ence of the waves atv and 2v due to the multiple reflections
at the sample surfaces. The chosen frequency is p
matched, so the average over the oscillations is proportio
to the square of the sample thicknessL2, as indicated by the
dotted line. Again, this fringe pattern cannot be obtained
the SVAA.

Figure 4 shows the SHG intensity for phase-matched c
~g! as a function of frequency, calculated by SVAA and e
actly. The difference in this case is primarily due to the
terference effects and therefore also depends on the choi
sample thickness.

V. DISCUSSION

One of the prominent properties of the optical SHG in t
helical Sm-C* phase is that the interference oscillations
the second-harmonic field as given by Eq.~23! originate pri-
marily from the helical modulation and not from the col
dispersion of the optical dielectric tensor as in the case of
homogeneous media. The color dispersion is important
the SHG only in the first category of the phase-match
combinations@combinations~a!, ~c!, and ~f! from Fig. 1#,

FIG. 2. Total transmitted~solid line! and reflected~dashed line!
SHG intensity for the linearly polarized fundamental beam w
frequencyv'0.5vB as a function ofk0 or q0 . The contributing
phase-matched combinations are the combinations~i!, ~j!, and ~e!
and the inverse of~e!.

FIG. 3. Total reflected~solid line! and transmitted~dashed line!
SHG intensity for the linearly polarized fundamental beam a
function of sample length atv'1.5vB @phase-matching case~g!#.
The dotted line corresponds to theL2 dependence.
-
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which corresponds to the situations where the optical wa
length is much shorter than the helical pitchp, that is, the
so-called Mauguin limit of the beam propagation@21#. All
the other phase-matched combinations are quite insens
to the color dispersion and might be considered as exam
of the nonlinear Bragg reflection from the helical structu
They have no analogy in the homogeneous Sm-C* phase
and therefore represent different possibilities for efficie
SHG in the helical Sm-C* material.

Due to the different order of nonlinearity some qualit
tively other phenomena can be observed when studying S
instead of the THG~or field-induced SHG! in the helical
liquid-crystalline materials@12–15#. The main distinctions
appear when the harmonic frequency is close to the edg
the selective reflection band. In this case, as shown origin
by Belyakov and Shipov, a remarkable ‘‘additional’’ en
hancement of the SHG or THG can appear@18,25,26# The
‘‘additional’’ enhancement means that the amplitude of t
harmonic fieldBk(z) increases faster than linearly with th
sample thichness. When considering the THG this enhan
ment is possible only if a definite relation between the heli
wave vectorq0 and the color dispersion«̄(3v)2 «̄(v) is
valid. For the analogous enhancement of the SHG, on
contrary, there are no additional requirements on the co
dispersion and therefore the phenomenon is much m
likely to be experimentally observed. The effect of enhan
ment is described with the phase-matched combinations~i!
and ~j! from Fig. 1.

The geometries related to the phase matching in the
gion of the selective reflection band can explain the exp
mental results of Kajikawaet al. @16# and Furukawaet al.
@17#, who have observed an increase of the SHG when
helical pitch of the Sm-C* material was tuned to the secon
harmonic wavelength. The fundamental beam was linea
polarized and entered the sample from one side only.
second-harmonic beam of equal intensity appeared in
forward as well as the backward direction with respect to
incident beam. According to our analysis, the linearly pol
ized incident beam results in both types of fundamen
eigenmodes within the sample. Both of the eigenmodes
then partially back reflected from the back surface of
sample and consequently the combination of the forward
the backward propagating modes enables the realizatio
the combinations~i!, ~j!, ~e!, and the inverse of~e! simulta-

a

FIG. 4. SHG intensity for the linearly polarized input beam
v'1.5vB as a function ofk0 or q0 , calculated by the SVAA~dot-
ted line! or by the exact procedure~solid line!.
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neously. The theoretical calculation of the SHG intensity
such a case is shown in Fig. 2 and is in very good agreem
with the experimental results.

The experiments of Kajikawaet al. and Furukawaet al.
are, to our knowledge, the only experimental investigation
the optical SHG in the helically twisted Sm-C* phase per-
formed until now. The reason that such studies are so
with respect to the SHG studies in the homogeneous
wound Sm-C* phase is probably the weak dependence of
Sm-C* helical pitch on temperature. A considerable var
tion of the pitch, which is required in order to observe d
ferent phase-matched combinations by using a fixed fun
mental frequency, appears only close to the temperatur
the phase transition from the Sm-C* to the Sm-A or the
cholesteric phase. In this region the nonlinear susceptib
of the material rapidly decreases with increasing tempera
and the corresponding low SHG intensity prevents go
quality measurements. This problem may be overcome
tuning the wavelength of the laser instead of the periodic
of the material. Another possibility is also to vary the helic
pitch not by changing the temperature of the sample
rather by changing the concentration of the left- and rig
handed compounds at temperatures far below the phase
sition. In this respect different mixtures of Sm-C* materials
exhibiting a large nonlinear optical susceptibility and at t
same time having the capability to vary the pitch by varyi
the composition would be very appropriate to optimize
SHG signal. AMATHEMATICA package that gives exact nu
merical solutions for the SHG field in the case of the wa
propagation along the Sm-C* helical axis in various experi
mental geometries can be found on the Internet at loca
http://optlab.ijs.si/lcpro

APPENDIX: COMPONENTS OF THE x „2… IN VARIOUS
COORDINATE SYSTEMS

In the laboratory system; for the Cartesian base

xxxx523@x112 cos
2u1x332 sin

2u1x132 sin
2u#cos2w sinw

2x222 sin
3w,

xxxy5@x112 cos
2u1x332 sin

2u1x132 sin2u#

3cosw~3 cos2w22!1x222 cosw sin2w,

xxxz5
1
2 @x112 sin2u2x332 sin2u22x132 cos2u#sin2w,

xxyy52@x112 cos
2u1x332 sin

2u

1x132 sin2u#sin w~3 sin2w22!2x222 cos
2w sinw,

xyyy53@x112 cos
2u1x332 sin

2u1x132 sin2u#cosw sin2w

1x222 cos
3w,

xyyz52 1
2 @x112 sin2u2x332 sin2u22x132 cos2u#sin2w,

xzzx52@x112 sin
2u1x332 cos

2u2x132 sin2u#sinw,

xzzy5@x112 sin
2u1x332 cos

2u2x132 sin2u#cosw,
r
nt

f

re
n-
e
-

a-
of

ty
re
d
y
y
l
t
t-
an-

e

e

n

xyxz52 1
2 @x112 sin2u2x332 sin2u22x132 cos2u#cos2w,

xzzz50,

where

w5~2pz/p!5q0z.

In the laboratory system, for the circular base,

x11152~x112!*5x22152~x222!*52
1

~A2!3
~xxxx

2 ixxxy1xxyy2 ixyyy!,

x12252~x211!*52
1

~A2!3
~xxxx13ixxxy23xxyy

2 ixyyy!,

x1205~x210!*52~x011!*52x02252 1
2 ~xxxz2xyyz

12ixxyz!,

x1105x22052x0125 1
2 ~xxxz1xyyz!,

x10052~x200!*52x0025~x001!*52
1

A2
~xxzz

1 ixyzz!,

x0005xzzz.

The componentsx i jk in the circular base are symmetric on
with respect to the permutations of the last two indices.
incorporating the previously given relations in the Cartes
base these expressions transform to

x11152~x112!*5x22152~x222!*

52
i

~A2!3
~x112 cos

2u1x332 sin
2u

1x123 sin2u1x222!e
2 iq0z,

x12252~x211!*52
i

~A2!3
~3x112 cos

2u13x332 sin
2u

13x123 sin2u2x222!e
3iq0z,

x1205~x210!*52~x011!*52x0225
1

2
@~x112

2x332!sin2u22x123 cos2u#e2iq0z,

x10052~x200!*52x0025~x001!*52
i

A2
~x112 sin

2u

1x332 cos
2u2x123 sin2u!eiq0z,

x1105x2205x0125x00050.

The components of the tensor of the transverse nonlin
susceptibiltyx tr

(2) are then given by
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x tr,11152~x tr,222!*5S x11122x110

a

A2
e2 iq0z

1x100

a2

2
e22iq0zD 5 ig1~u!e2 iq0z,

x tr,11252~x tr,221!*5S x1121x110

a

A2
e1 iq0z

2x120

a

A2
e2 iq0z2x100

a2

2 D 5 ig2~u!eiq0z,

x tr,12252~x tr,211!*5S x12212x120

a

A2
eiq0z

1x100

a2
e2iq0zD 5 ig3~u!e3iq0z,
2

d

a

J

i,

,

,

-

where the functionsgi(u) are

g1~u!52
1

~A2!3
@x112~cos

2u1a2 sin2u!1x332~sin
2u

1a2 cos2u!1x123~sin2u!~12a2!1x222#,

g2~u!5
1

~A2!3
@x112~cosu2a sinu!21x332~sinu1a cosu!2

1x123~sin2u12a cos2u2a2 sin2u!1x222#,

g3~u!5
1

~A2!3
@x112~23 cos2u12a sin2u2a2 sin2u!

1x332~23 sin2u22a sin2u2a2 cos2u!

1x123~23 sin2u24a cos2u1a2 sin2u!1x222#.
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